eScada HMI Solution — Drivers wwuw.escadasolutions.com

v24.2.0
Drivers

eScada.Drivers.OpcUaTcp

eScada HMI Solution — Drivers 10f4

Scada HMI Solution — Drivers wwuw.escadasolutions.com

eScada.Drivers.OpcUaTcp
(OPCUA - TCP Based transport)
OS availability
Windows, Linux, RaspBian

Atomic data type
Following OPCUA specifications for implemented data types.

Documentation reference
https://opcfoundation.org
Driver based on library https://www.open62541.org/

Parameters available in every section

Channel: none
Device: Service end point example: opc.tcp://192.168.1.105:49320
Multiple addresses can be expressed using multiple rows or a
comma.
Security mode Anonymous, Login (not encrypted)
Network timeout [ms]
Per-call timeout [ms]
Reconnect timeout [ms] Waiting time before a reconnection after COMM break-down
Tag prefix ID (1)
Tag prefix (2)
Group: Tag prefix (2) This property will be selected as first option even in case a
global tag prefix is expressed on device.
Tag: none

(1)
This property must be used to select a different “Tag prefix” text, if it is specified using multi rows.
The value must be set accordingly with the row number in “Tag prefix” you want to use as tag prefix.

(2)

If your device uses a long prefix for tags addressing, instead of writing it every tag address, you can specify it
in this property.

e.g. |var|CODESYS Control for Raspberry Pi MC SL.Application. HMI.

Multiple prefixes are allowed, please specify them on different rows as shown below.
|[var|CODESYS Control for Raspberry Pi MC SL.Application.HMI. selected with “Tag prefix ID”
OPCUA-Server.KEPServer. selected with “Tag prefix ID” = 1

Il
(=]

The tag prefix will be inserted into tag address after the text s=

e.g. If your specified tag address is ns=2;s=0ilPressure, the resulting final address will be:
ns=2;s=0PCUA-Server.KEPServer.OilPressure with a prefix ID = 0
ns=2;s=|var|CODESYS Control for Raspberry Pi MC SL.Application.HMI.OilPressure with a prefix ID = 1

remark: In case of a specific device doesn’t need tag prefix, <empty> text must be specified instead.

This particular setting plus multiple addresses, should be useful to keep a unique HMI project even using
different devices; obviously is up to the programmer keep the same variables names among different devices.

Remarks for devices
The following attributes can be expressed for each device.

Bytes order actions None, Swap bytes order, Swap bytes order in DWords, Swap words order,
Swap bytes order in DWords then words order
String actions None, Swap bytes in words

Scada HMI Solution — Drivers 20of4

Scada HMI Solution — Drivers wwuw.escadasolutions.com

Implemented data types

OPCUA data type Single element HMI Array
Boolean single bit Yes Yes
Byte, SByte 8 bit Yes Yes
Uintle, Intl6 16 bit Yes Yes
UInt32, Int32 32 bit Yes Yes
Uint64, Int64 64 bit Yes Yes
Float 32 bit Yes Yes
Double 64 bit Yes Yes
String 1 byte per character Yes Yes
ByteString 1 byte per character Yes Yes

OPCUA Arrays are supported

Addressing
You can address every variable with a basic data type, using its node-id syntax

Nodeld - XML Notation
The format of the node-id is:
ns=<namespacelndex>;<identifiertype>=<identifier>

<namespace index>
The namespace index formatted as a base 10 number.
If the index is 0, then the entire “ns=0;" clause is omitted.

<identifier type>
A flag that specifies the identifier type. The flag has the following values:

Flag Identifier Type
[NUMERIC (Ulnteger)

S STRING (String)
g GUID not supported
b Opaque/ByteString not supported

<identifier>
The identifier encoded as string. The identifier is formatted using the XML data type mapping for the identifier
type. Note that the identifier may contain any non-null UTF8 character including whitespace.

Examples
ns=2;s=Channell.Devicel.array_double

name-space index 2, string identifier

s=Channell.Devicel.tag
name-space index 0, string identifier

ns=2;i=2048
name-space index 2, numeric identifier

i=2048
name-space index 0, numeric identifier

Multiple addresses

You can specify more than one address, using multiple rows

The property specified in device parameters called “Tag prefix ID”, will be used to select the address to use.
ns=1;s=MyVariable with a prefix ID = 0

ns=2;s=AnotherMyVariable with a prefix ID = 1

remark: please you should refer to your device documentation in order to get information about the
<namespace index> and <identifier> to use; or you could use “UA Expert” client to browse UA servers:
https://www.unified-automation.com/products/development-tools

Scada HMI Solution — Drivers 30of4

Scada HMI Solution — Drivers wwuw.escadasolutions.com

Variable type Type OPCUA type ‘ Items

Boolean
The number of items used declaring TAGs, must be a multiple of source PLC data size.
Every group of booleans, must start from the first bit.

Single bit Bit Boolean and all others numeric data type (C)
except for floating point
Byte
Unsigned 8 bit UInt8
X ; Byte, SByte (C)
Signed 8 bit Int8
16 bit
Unsigned integer 16 bit uintl6
- - - Uintl6, Intl6 (C)
Signed integer 16 bit Int1l6
32 bit
Unsigned integer 32 bit Uint32
Signed integer 32 bit Int32 UInt32, Int32 (C)
Single precision 32 bit - (IEEE 754) Float
64 bit
Unsigned integer 64 bit Uint64
Signed integer 64 bit Int64 UInt64, Int64 (C)
Double precision 64 bit - (IEEE 754) Double
Strings
String bytes can be interpreted as ASCII, UTF-7, UTF-8, UTF-16 or UTF-32 encoding
Strings String String, ByteString (C)

(C) It depends on how the OPCUA node is implemented on PLC side

Consecutive items

The number of consecutive read/write items, depends on the device model.

Please have a look at ‘Implemented data types’ to understand which type of basic object can be addressed
using array of items.

Scada HMI Solution — Drivers 4 of 4

